Signal transformations required for the generation of saccadic eye movements.
نویسندگان
چکیده
Chronic unit recording experiments conducted over the past two decades have identified many functional classes of neurons with saccade-related activity that reside in a host of brainstem nuclei. Older models of the saccadic system were based upon the properties of only a few of these functional types of neurons. They described the putative flow of signals through the brainstem circuitry and specified some, but not all, of the signal transformations to be performed. How the necessary computations were performed by neurons was not always explicit. Recent experiments investigating the neural control of saccadic eye movements and modifications of the original models are designed to fill in the details of the broad sketch of saccadic circuitry originally available. This review suggests one strategy for proceeding with this effort. Saccadic command signals observed in the SC require transformation to interface with the burst generators and motoneuron pools innervating the extraocular muscles. Specifying the signal transformations required for this interface should facilitate the design of experiments directed toward an understanding of the functional properties of cells located in nuclei intervening between the SC and the pulse/step circuitry, subsets of neurons that often have no role in models of the saccadic system. In this review, we hypothesize that neurons residing in various tectorecipient brainstem nuclei participate in one or more of the required signal transformations. The pathway from SC to cMRF and PPRF may be involved in the extraction of information about the amplitude and/or velocity of the horizontal component of oblique saccades. The pathway from SC to NRTP and cerebellar vermis may act selectively to generate signals compensating for the presaccadic orbital position. Finally, the activity of LLBNs and MLBs discharging maximally before oblique saccades may form the basis of computations required to match component velocity with overall saccade direction and amplitude. Although the data supporting these speculations are meager at present, such conjectures do form the basis of working hypotheses that can be tested experimentally. We also considered the implications of kinematic constraints, especially Donders' and Listing's laws, for future investigations. Tweed & Vilis (1987, 1990) proposed models specifically designed to handle these constraints. In their models, eye position is represented on four oculomotor channels: three coding the vector components of eye position, and one carrying a signal inversely related to gaze eccentricity and torsion. Yet, other evidence suggest that simpler computations may suffice for the implementation of laws that are only approximately obeyed.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
245 - 252 van Donkelaar sept 04
In several recent studies, saccadic eye movements were found to be influenced by concurrent reaching movements. The authors investigated whether that influence originates in limb kinematic or kinetic signals. To dissociate those 2 possibilities, the authors required participants (N = 6) to generate pointing movements with a mass that either resisted or assisted limb motion. With practice, parti...
متن کاملComputer simulation of overshoot in saccadic eye movements.
The human horizontal eye movement system produces quick, precise, conjugate eye movements called saccades. These are important in normal vision. For example, reading tasks exclusively utilize saccadic eye movements. The majority of saccades have dynamic overshoot. The amplitude of this overshoot is independent of saccadic amplitude, and is such that it places the image of the stimulus within th...
متن کاملCountermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.
The countermanding task requires subjects to cancel a planned movement on appearance of a stop signal, providing insights into response generation and suppression. Here, we studied human eye-head gaze shifts in a countermanding task with targets located beyond the horizontal oculomotor range. Consistent with head-restrained saccadic countermanding studies, the proportion of gaze shifts on stop ...
متن کاملJn-01171-2004.r2 Countermanding Eye-head Gaze Shifts in Humans: Marching Orders Are Delivered to the Head First
The countermanding task requires subjects to cancel a planned movement upon appearance of a stop signal, providing insights into response generation and suppression. Here, we studied human eye-head gaze shifts in a countermanding task with targets located beyond the horizontal oculomotor range. Consistent with head-restrained saccadic countermanding studies, the proportion of gaze shifts on STO...
متن کاملGlissades-Eye Movements Generated by Mismatched Components of the Saccadic Motoneuronal Control Signal
Human saccadic eye movements have three types of overshoot: dynamic overshoot, lasting 10-30 ms; glissadic overshoot, lasting 30-500 ms; and static overshoot, which is amended-after a delay of about 200 ms-by a subsequent corrective saccade. Glissades are the slow drifting eye movements occasionally seen at the end of saccadic eye movements. Glissades are hypothecated to be produced by mismatch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of neuroscience
دوره 13 شماره
صفحات -
تاریخ انتشار 1990